Gaussian and robust Kronecker product covariance estimation: Existence and uniqueness

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian and robust Kronecker product covariance estimation: Existence and uniqueness

We study the Gaussian and robust covariance estimation, assuming the true covariance matrix to be a Kronecker product of two lower dimensional square matrices. In both settings we define the estimators as solutions to the constrained maximum likelihood programs. In the robust case, we consider Tyler’s estimator defined as the maximum likelihood estimator of a certain distribution on a sphere. W...

متن کامل

Models with a Kronecker Product Covariance Structure: Estimation and Testing

In this article we consider a pq-dimensional random vector x distributed normally with mean vector θ and the covariance matrix Λ, assumed to be positive definite. On the basis of N independent observations on the random vector x, we wish to estimate parameters and test the hypothesis H: Λ = Ψ ⊗Σ, where Ψ = (ψij) : q × q and Σ = (σij) : p × p, and Λ = (ψijΣ), the Kronecker product of Ψ and Σ. Th...

متن کامل

Covariance Estimation via Sparse Kronecker Structures

The problem of estimating covariance matrices is central to statistical analysis and is extensively addressed when data are vectors. This paper studies a novel Kronecker-structured approach for estimating such matrices when data are matrices and arrays. Focusing on matrix-variate data, we present simple approaches to estimate the row and the column correlation matrices, formulated separately vi...

متن کامل

Flexible Covariance Estimation in Graphical Gaussian Models

In this paper, we propose a class of Bayes estimators for the covariance matrix of graphical Gaussian models Markov with respect to a decomposable graph G. Working with the WPG family defined by Letac and Massam [Ann. Statist. 35 (2007) 1278–1323] we derive closed-form expressions for Bayes estimators under the entropy and squared-error losses. The WPG family includes the classical inverse of t...

متن کامل

Locally Weighted Full Covariance Gaussian Density Estimation

We describe an interesting application of the principle of local learning to density estimation. Locally weighted fitting of a Gaussian with a regularized full covariance matrix yields a density estimator which displays improved behavior in the case where much of the probability mass is concentrated along a low dimensional manifold. While the proposed estimator is not guaranteed to integrate to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2016

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2016.04.001